|  |
 |
| Artikel-Nr.: 858A-9783540786511 Herst.-Nr.: 9783540786511 EAN/GTIN: 9783540786511 |
| |
|
|  |  |
 | Probabilistic Inductive Logic Programming.- Formalisms and Systems.- Relational Sequence Learning.- Learning with Kernels and Logical Representations.- Markov Logic.- New Advances in Logic-Based Probabilistic Modeling by PRISM.- CLP( ): Constraint Logic Programming for Probabilistic Knowledge.- Basic Principles of Learning Bayesian Logic Programs.- The Independent Choice Logic and Beyond.- Applications.- Protein Fold Discovery Using Stochastic Logic Programs.- Probabilistic Logic Learning from Haplotype Data.- Model Revision from Temporal Logic Properties in Computational Systems Biology.- Theory.- A Behavioral Comparison of Some Probabilistic Logic Models.- Model-Theoretic Expressivity Analysis. Weitere Informationen:  |  | Author: | Luc De Raedt; Paolo Frasconi; Kristian Kersting; Stephen H. Muggleton | Verlag: | Springer Berlin | Sprache: | eng |
|
|  |  |
 | |  |  |
 | Weitere Suchbegriffe: allgemeine Informatikbücher - englischsprachig, allgemeine informatikbücher - englischsprachig, Bayes-Verfahren, Data Mining (EDV), Intelligenz / Künstliche Intelligenz, KI, Künstliche Intelligenz - AI, Logikprogrammierung, Bayesian networks, Kernel, algorithmic learning, classifier systems, clustering |
|  |  |
| |