Kategorien
Konto
Anmelden / Registrieren
Warenkorb
 
 

Principles of Data Mining and Knowledge Discovery


Menge:  Stück  
Produktinformationen
cover
cover
Artikel-Nr.:
     858A-9783540440376
Hersteller:
     Springer Verlag
Herst.-Nr.:
     9783540440376
EAN/GTIN:
     9783540440376
Suchbegriffe:
Anwendungssoftware (Fachbücher)
Anwendungssoftwarebücher
Bücher für Datenbanken - englischsp...
Bücher zu Anwendungs-Software - eng...
Contributed Papers.- Optimized Substructure Discovery for Semi-structured Data.- Fast Outlier Detection in High Dimensional Spaces.- Data Mining in Schizophrenia Research -- Preliminary Analysis.- Fast Algorithms for Mining Emerging Patterns.- On the Discovery of Weak Periodicities in Large Time Series.- The Need for Low Bias Algorithms in Classification Learning from Large Data Sets.- Mining All Non-derivable Frequent Itemsets.- Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance.- Finding Association Rules with Some Very Frequent Attributes.- Unsupervised Learning: Self-aggregation in Scaled Principal Component Space*.- A Classification Approach for Prediction of Target Events in Temporal Sequences.- Privacy-Oriented Data Mining by Proof Checking.- Choose Your Words Carefully: An Empirical Study of Feature Selection Metrics for Text Classification.- Generating Actionable Knowledge by Expert-Guided Subgroup Discovery.- Clustering Transactional Data.- Multiscale Comparison of Temporal Patterns in Time-Series Medical Databases.- Association Rules for Expressing Gradual Dependencies.- Support Approximations Using Bonferroni-Type Inequalities.- Using Condensed Representations for Interactive Association Rule Mining.- Predicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting.- Dependency Detection in MobiMine and Random Matrices.- Long-Term Learning for Web Search Engines.- Spatial Subgroup Mining Integrated in an Object-Relational Spatial Database.- Involving Aggregate Functions in Multi-relational Search.- Information Extraction in Structured Documents Using Tree Automata Induction.- Algebraic Techniques for Analysis of Large Discrete-Valued Datasets.- Geography of Di.erences between Two Classes of Data.- Rule Induction for Classification of Gene Expression Array Data.- Clustering Ontology-Based Metadata in the Semantic Web.- Iteratively Selecting Feature Subsets for Mining from High-Dimensional Databases.- SVMClassification Using Sequences of Phonemes and Syllables.- A Novel Web Text Mining Method Using the Discrete Cosine Transform.- A Scalable Constant-Memory Sampling Algorithm for Pattern Discovery in Large Databases.- Answering the Most Correlated N Association Rules Efficiently.- Mining Hierarchical Decision Rules from Clinical Databases Using Rough Sets and Medical Diagnostic Model.- Efficiently Mining Approximate Models of Associations in Evolving Databases.- Explaining Predictions from a Neural Network Ensemble One at a Time.- Structuring Domain-Specific Text Archives by Deriving a Probabilistic XML DTD.- Separability Index in Supervised Learning.- Invited Papers.- Finding Hidden Factors Using Independent Component Analysis.- Reasoning with Classifiers*.- A Kernel Approach for Learning from Almost Orthogonal Patterns.- Learning with Mixture Models: Concepts and Applications.
Weitere Informationen:
Author:
Tapio Elomaa; Heikki Mannila; Hannu Toivonen
Verlag:
Springer Berlin
Sprache:
eng
Weitere Suchbegriffe: Datenbanken (Fachbücher), Datenbankenbücher, datenbanken (fachbücher), Datenverarbeitung / Anwendungen / Mathematik, Statistik, Datenverarbeitung / Informationsmanagement, Dokumentation, Intelligenz / Künstliche Intelligenz, KI, Künstliche Intelligenz - AI, Data Mining; Learning; algorithms; classification; kernel; knowledge; knowledge discovery, algorithms, classification, data mining, kernel
Die Konditionen im Überblick1
Lieferzeit
Lagerstand
Preis
€ 49,99*
Konditionen selbst auswählen
Artikel empfehlenArtikel merken
* Preise mit Sternchen sind Nettopreise zzgl. gesetzlich gültiger MwSt.
UVP bedeutet „Unverbindliche Preisempfehlung“
Unser Angebot richtet sich ausschließlich an Unternehmen, Gewerbetreibende und Freiberufler.